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Basic Algebraic Structures

Glasses through which we view mathematics.
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Groups

Formulas for equations of degrees 2,3,4

x2 − ax + b = 0; x1,2 =
a ±
√
a2 − 4b

2

Cubic equation: Cardano

Quartic equation: Ferrari

Equation of degree 5?

Fantastic observation of J.-L. Lagrange (1736 - 1813):
key to these formulas is symmetry of roots.
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Groups

Theory of symmetries : Group Theory

α, β symmetries

Perform α and then perform β  multiplication αβ

Undo α α−1

There is a very special symmetry: Id, nothing is moved
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Groups

A. - L. Cauchy, P. Ruffini (almost did)

N. H. Abel (1802 - 1829) : did!

No formula for equations of degree ≥ 5.

Evariste Galois (1811 - 1832)

Complete understanding of how symmetries (Galois Groups)
control equations.

The right question about any object:
What is the group of symmetries?

Hermann Weyl: the most influential paper in the history of
mathematics.
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Evariste Galois Joseph-Louis Lagrange
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Groups

20th century, Elementary Particles

“If God exists then he knows Group Theory”

G finite group; H C G normal subgroup

G is built from H , G/H

“Bricks”: simple groups

The Biggest Program in Algebra (started in 1837, lasted for >
150 years): find all finite simple groups.
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Groups

E. Galois (1837) : An, n ≥ 5

Jordan, Dixon (1870) : groups of matrices

Mathieu (1860) : 5 “exceptional”groups

More and more to come

W. Feit - J. Thompson (1960) : all simple groups have even
number of elements
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Groups

R. Brauer Program

g ∈ G , g 2 = 1

C (g) = {x ∈ G |xg = gx} centralizer.

smaller than G , hence “known”
?⇒ G .
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Groups

Griess-Fischer (1980): the biggest sporadic simple group, known
as THE MONSTER

Huge: representable by matrices of order 196883.

J(q) = q−1 + 0 + 196884q + · · ·
normalized modular series.

Moonshine Conjecture (McKay, Norton, Thompson)

There exists a representation of the Monster

V = V−1 + V0 + V1 + V2 + · · ·

such that

1)
∑

(dimVi)q
i = J(q)

2) for any g ∈ G ,
∑
i

TrVi
(g)qi is modular .
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Groups

1982 - The Classification announced to be finished.

Actually completely published in 2011.

More than 10,000 pages.
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Groups

Infinite Groups

M. Dehn (1906) G = 〈a1, . . . , am|r1 = 1, . . . , rs = 1〉
v(a1, . . . , am)

?
= w(a1, . . . , am).

Algorithmic Problems

Definition of an algorithm, Turing machines.
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Groups

P.S. Novikov (1952): groups with undecidable word problem.

W. Burnside (1902): G = 〈a1, . . . , am〉, there exists n ≥ 1 such

that gn = 1 for all g ∈ G
?⇒ |G | <∞.

What makes a group finite?

Big impact on Infinite Algebra and on my life.
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Groups

Infinite Groups

Hopelessly Infinite Residually Finite

Examples of Novikov-

Adian, Ol’shansky

Geometric Group Theory

Links to Number Theory,

Graph Theory

Restricted Burnside Problem

G = 〈a1, . . . , am〉 → Cayley Graph

Γ = (V ,E )

V = G

g2

g1
g2 = a±1i g1
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Groups

A connected graph is a metric space.

G acts on Γ by isometries.

Gromov (80s): Group as a Geometric Object.
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Rings

Rings

(x2 + y 2)(z2 + t2) = (xz − yt)2 + (xt + yz)2

Complex numbers C = R + Ri , i2 = −1.

(x + yi)(z + ti) = (xz − yt) + (xt + yz)i

What about a product of x2 + y 2 + z2’s?
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Quaternions

W.R. Hamilton (1805-1865) October 16, 1843 walking from the
Observatory to the University:

H = R · 1 + R · i + R · j + R · k

i2 = j2 = k2 = −1

ij = k , jk = i , ki = j

ij = −ji , ik = −ki , jk = −kj

i

jk

Quaternions = noncommutative associative 4-dimensional division
algebra.
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Octonions

Hamilton wrote a letter to J. Graves, who went further:

O = H + Hv , v 2 = −1, Octonions

8-dimensional, but not associative.

A. Cayley read Hamilton’s paper and also discovered O:
Octonions or Cayley numbers.

R→ C→ H→ O · · ·

Kervaire - Milnor (1958), finite dimensional division algebras/R:
dimensions 1,2,4,8.
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Rings

Infinite Rings

Abstract Revolution led by D. Hilbert and E. Noether.
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Rings

H.M. Wedderburn (1908):

dimA <∞, no ideals I 6= (0), I 2 = (0). Then

A ∼= Mn1(D1)⊕ · · · ⊕Mnr (Dr ),

Di division algebras.

What about Di ’s?

Albert, Brauer, Hasse, Noether:

Division algebras over algebraic number fields.

Arbitrary fields?
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Rings

Amitsur (1975): generic division algebras.

Merkuriev - Souslin (1984)

F 3 all roots of 1

D ∼ D1 ⊗ · · · ⊗ Dr ,

Di generalized quaternion algebras.
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Rings

Hilbert (1888) : solved an important problem on invariants in a
very strange way.

Gordan : “Das ist nicht Mathematik. Das ist Theologie.”

E. Noether (1920s) : theory of ideals in rings + 1932 ICM
Plenary Talk.

Manifesto of Abstract Algebra.

Axiomatic Method: The World of Mathematics is seduced.
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Axiomatics

H. Weyl: “Nice general concepts do not fall into our laps by

themselves. But definite concrete problems were first conquered

in their undivided complexity, singlehanded by brute force, so to

speak. Only afterwards the axiomaticians came along and stated:

Instead of breaking the door with all your might and bruising your

hands, you should have constructed such and such a key of skill,

and by it you would have been able to open the door quite

smoothly. But they can construct the key only because they are

able, after the breaking in was successful, to study the lock from

within.”
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Hermann Weyl
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Axiomatics

Mathematics is not a study of Axioms

(1) We formulate the most important properties of an object
that are relevant to our study,

(2) We take these properties as axioms and study all objects
that satisfy these axioms.

Since Noether, Mathematics speaks the language of Axioms.
Even critics of Axiomatics write their papers in this way. It is like
complaining about exceeding predominance of English...in
English.
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Algebras

N. Jacobson, I. Kaplansky:

Structure theory of infinite dimensional noncommutative algebras.

Links to Operator Algebras.

Influence of Mathematical Physics:

everything becomes Infinite Dimensional and Noncommutative.
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Lie Algebras

Lie Algebras

Sophus Lie:

G Lie group → T1G , [ , ]{
[x , y ] = −[y , x ]

[[x , y ], z ] + [[y , z ], x ] + [[z , x ], y ] = 0

W. Killing, E. Cartan

L has no ideals I 6= (0), [I , I ] = (0)

⇒ L = L1 ⊕ · · · ⊕ Ls ,

Li simple, An,Bn,Cn,Dn,G2,F4,E6,E7,E8.
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Lie Algebras

Building blocks for G2,F4,E6,E7,E8:

nonassociative algebras

O, J = H3(O) Jordan algebra

G2 = DerO, F4 = Der J, etc.

30 - 40s H.Weyl : LIE ALGEBRAS

⇓

influence on classification of finite simple groups

50s Chevalley Groups

Finite Fields
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Lie Algebras

Infinite Dimensional Lie Algebras

V. Kac, R. Moody, 1968

g simple, dimF g <∞

L = g⊗ F [t−1, t] + F�

L =
∑
i∈Z

Li , V =
∑
i∈Z

Vi

graded module, graded dimension∑
i

(dimVi )q
i

characters = series in q.
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Algebras

Combinatorial identities

Mathematical Physics

Vertex Operator Algebras

V = V−1 + V0 + V1 + · · ·

AutV = Monster Moonshine Representation

(Tits, Kac, Borcherds, Frenkel-Lepovsky-Meurman)

New hopes for the Classification

J1 Janko group?
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21st Century

21st Century

1. New approaches to THE CLASSIFICATION.

2. New Noncommutative and Infinite Dimensional World.

3. Linear Algebra.
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21st Century


a11x1 + · · ·+ a1nxn = a1

...

an1x1 + · · ·+ annxn = an

Gauss Algorithm ⇒≈ n3 operations

Suppose that the size n is HUGE, and, in addition, we don’t
know the coefficients precisely. But (!) most aij = 0.

Problem: do better than n3.
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21st Century

Many problems with Big Data and AI boil down to this problem.

Deep Learning = pattern recognition in multidimensional spaces.

Experience: inequality

a1x1 + · · ·+ amxm ≤ a

Many of them!

“Unreasonable effectiveness of Mathematics” E. Wigner
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