Basic Algebraic Structures

E. Zelmanov

Basic Algebraic Structures

IWMANUEL KANT
From at painting
Glasses through which we view mathematics.

Groups

Formulas for equations of degrees 2,3,4

$$
x^{2}-a x+b=0 ; \quad x_{1,2}=\frac{a \pm \sqrt{a^{2}-4 b}}{2}
$$

Cubic equation: Cardano
Quartic equation: Ferrari
Equation of degree 5?
Fantastic observation of J.-L. Lagrange (1736-1813): key to these formulas is symmetry of roots.

Groups

Theory of symmetries: Group Theory
α, β symmetries

Perform α and then perform $\beta \rightsquigarrow$ multiplication $\alpha \beta$

Undo $\alpha \rightsquigarrow \alpha^{-1}$

There is a very special symmetry: Id, nothing is moved

Groups

A. - L. Cauchy, P. Ruffini (almost did)
N. H. Abel (1802-1829) : did!

No formula for equations of degree ≥ 5.

Evariste Galois (1811-1832)
Complete understanding of how symmetries (Galois Groups) control equations.

The right question about any object:
What is the group of symmetries?
Hermann Weyl: the most influential paper in the history of mathematics.

Evariste Galois

Joseph-Louis Lagrange

Groups

20th century, Elementary Particles
"If God exists then he knows Group Theory"
G finite group; $H \triangleleft G$ normal subgroup
G is built from $H, G / H$
"Bricks": simple groups

The Biggest Program in Algebra (started in 1837, lasted for $>$ 150 years): find all finite simple groups.

Groups

E. Galois (1837) : $A_{n}, n \geq 5$

Jordan, Dixon (1870) : groups of matrices
Mathieu (1860) : 5 "exceptional" groups
More and more to come
W. Feit - J. Thompson (1960) : all simple groups have even number of elements

Groups

R. Brauer Program
$g \in G, g^{2}=1$
$C(g)=\{x \in G \mid x g=g x\}$ centralizer.
smaller than G, hence "known" $\stackrel{?}{\Rightarrow} G$.

Groups

Griess-Fischer (1980): the biggest sporadic simple group, known as THE MONSTER

Huge: representable by matrices of order 196883.
$J(q)=q^{-1}+0+196884 q+\cdots$
normalized modular series.

Moonshine Conjecture (McKay, Norton, Thompson)
There exists a representation of the Monster

$$
V=V_{-1}+V_{0}+V_{1}+V_{2}+\cdots
$$

such that

1) $\sum\left(\operatorname{dim} V_{i}\right) q^{i}=J(q)$
2) for any $g \in G, \sum_{i} \operatorname{Tr}_{V_{i}}(g) q^{i}$ is modular.

Groups

1982 - The Classification announced to be finished.

Actually completely published in 2011.

More than 10,000 pages.

Groups

Infinite Groups

M. Dehn (1906) $G=\left\langle a_{1}, \ldots, a_{m} \mid r_{1}=1, \ldots, r_{s}=1\right\rangle$
$v\left(a_{1}, \ldots, a_{m}\right) \stackrel{?}{=} w\left(a_{1}, \ldots, a_{m}\right)$.
Algorithmic Problems
Definition of an algorithm, Turing machines.

Groups

P.S. Novikov (1952): groups with undecidable word problem.
W. Burnside (1902): $G=\left\langle a_{1}, \ldots, a_{m}\right\rangle$, there exists $n \geq 1$ such that $g^{n}=1$ for all $g \in G \stackrel{?}{\Rightarrow}|G|<\infty$.

What makes a group finite?

Big impact on Infinite Algebra and on my life.

Groups

Infinite Groups

Hopelessly Infinite
Residually Finite

Examples of Novikov-
Adian, Ol'shansky

Geometric Group Theory

Links to Number Theory, Graph Theory
Restricted Burnside Problem
$G=\left\langle a_{1}, \ldots, a_{m}\right\rangle \rightarrow$ Cayley Graph
$\Gamma=(V, E)$
$V=G$

Groups

A connected graph is a metric space.
G acts on 「 by isometries.

Gromov (80s): Group as a Geometric Object.

Rings

$$
\left(x^{2}+y^{2}\right)\left(z^{2}+t^{2}\right)=(x z-y t)^{2}+(x t+y z)^{2}
$$

Complex numbers $\mathbb{C}=\mathbb{R}+\mathbb{R} i, i^{2}=-1$.

$$
(x+y i)(z+t i)=(x z-y t)+(x t+y z) i
$$

What about a product of $x^{2}+y^{2}+z^{2}$'s?

Quaternions

W.R. Hamilton (1805-1865) October 16, 1843 walking from the Observatory to the University:

$$
\begin{aligned}
& \qquad \mathbb{H}=\mathbb{R} \cdot 1+\mathbb{R} \cdot i+\mathbb{R} \cdot j+\mathbb{R} \cdot k \\
& i^{2}=j^{2}=k^{2}=-1 \\
& i j=k, \quad j k=i, \quad k i=j \\
& i j=-j i, \quad i k=-k i, \quad j k=-k j
\end{aligned}
$$

$\underline{\text { Quaternions }}=$ noncommutative associative 4-dimensional division algebra.

Octonions

Hamilton wrote a letter to J. Graves, who went further:

$$
\mathbb{O}=\mathbb{H}+\mathbb{H} v, v^{2}=-1, \quad \underline{\text { Octonions }}
$$

8-dimensional, but not associative.
A. Cayley read Hamilton's paper and also discovered \mathbb{O} :

Octonions or Cayley numbers.
$\mathbb{R} \rightarrow \mathbb{C} \rightarrow \mathbb{H} \rightarrow \mathbb{O} \cdots$

Kervaire - Milnor (1958), finite dimensional division algebras $/ \mathbb{R}$: dimensions 1,2,4,8.

Rings

Infinite Rings

Abstract Revolution led by D. Hilbert and E. Noether.

Rings

H.M. Wedderburn (1908):
$\operatorname{dim} A<\infty$, no ideals $I \neq(0), I^{2}=(0)$. Then

$$
A \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{r}}\left(D_{r}\right),
$$

D_{i} division algebras.

What about D_{i} 's?

Albert, Brauer, Hasse, Noether:
Division algebras over algebraic number fields.

Arbitrary fields?

Rings

Amitsur (1975): generic division algebras.

Merkuriev - Souslin (1984)
$F \ni$ all roots of 1
$D \sim D_{1} \otimes \cdots \otimes D_{r}$,
D_{i} generalized quaternion algebras.

Rings

Hilbert (1888) : solved an important problem on invariants in a very strange way.

Gordan: "Das ist nicht Mathematik. Das ist Theologie."
E. Noether (1920s) : theory of ideals in rings +1932 ICM Plenary Talk.

Manifesto of Abstract Algebra.

Axiomatic Method: The World of Mathematics is seduced.

Axiomatics

H. Weyl: "Nice general concepts do not fall into our laps by themselves. But definite concrete problems were first conquered in their undivided complexity, singlehanded by brute force, so to speak. Only afterwards the axiomaticians came along and stated: Instead of breaking the door with all your might and bruising your hands, you should have constructed such and such a key of skill, and by it you would have been able to open the door quite smoothly. But they can construct the key only because they are able, after the breaking in was successful, to study the lock from within."

Hermann Weyl

Axiomatics

Mathematics is not a study of Axioms
(1) We formulate the most important properties of an object that are relevant to our study,
(2) We take these properties as axioms and study all objects that satisfy these axioms.

Since Noether, Mathematics speaks the language of Axioms. Even critics of Axiomatics write their papers in this way. It is like complaining about exceeding predominance of English...in English.

Algebras

N. Jacobson, I. Kaplansky:

Structure theory of infinite dimensional noncommutative algebras.

Links to Operator Algebras.

Influence of Mathematical Physics:
everything becomes Infinite Dimensional and Noncommutative.

Lie Algebras

Lie Algebras

Sophus Lie:
G Lie group $\rightarrow T_{1} G$, [,]

$$
\left\{\begin{array}{l}
{[x, y]=-[y, x]} \\
{[[x, y], z]+[[y, z], x]+[[z, x], y]=0}
\end{array}\right.
$$

W. Killing, E. Cartan
L has no ideals $I \neq(0),[I, I]=(0)$
$\Rightarrow L=L_{1} \oplus \cdots \oplus L_{s}$,
L_{i} simple, $A_{n}, B_{n}, C_{n}, D_{n}, G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.

Lie Algebras

> Building blocks for $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$:
> nonassociative algebras
$\mathbb{O}, J=H_{3}(\mathbb{O})$ Jordan algebra
$G_{2}=\operatorname{Der} \mathbb{O}, F_{4}=\operatorname{Der} J$, etc.

30-40s H.Weyl: LIE ALGEBRAS
\Downarrow
influence on classification of finite simple groups

50s Chevalley Groups
Finite Fields

Lie Algebras

Infinite Dimensional Lie Algebras

V. Kac, R. Moody, 1968
\mathfrak{g} simple, $\operatorname{dim}_{F} \mathfrak{g}<\infty$
$L=\mathfrak{g} \otimes F\left[t^{-1}, t\right]+F \not \subset$
$L=\sum_{i \in \mathbb{Z}} L_{i}, V=\sum_{i \in \mathbb{Z}} V_{i}$
graded module, graded dimension
$\sum_{i}\left(\operatorname{dim} V_{i}\right) q^{i}$
characters $=$ series in q.

Algebras

Combinatorial identities
Mathematical Physics

Vertex Operator Algebras
$V=V_{-1}+V_{0}+V_{1}+\cdots$
Aut $V=\underline{\text { Monster Moonshine Representation }}$
(Tits, Kac, Borcherds, Frenkel-Lepovsky-Meurman)
New hopes for the Classification
$J_{1} \quad$ Janko group?

21st Century

21st Century

1. New approaches to THE CLASSIFICATION.
2. New Noncommutative and Infinite Dimensional World.
3. Linear Algebra.

21st Century

$$
\left\{\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=a_{1} \\
\vdots \\
a_{n 1} x_{1}+\cdots+a_{n n} x_{n}=a_{n}
\end{array}\right.
$$

Gauss Algorithm $\Rightarrow \approx n^{3}$ operations

Suppose that the size n is HUGE, and, in addition, we don't know the coefficients precisely. But (!) most $a_{i j}=0$.

Problem: do better than n^{3}.

21st Century

Many problems with Big Data and Al boil down to this problem.

Deep Learning $=$ pattern recognition in multidimensional spaces.

Experience: inequality

$$
a_{1} x_{1}+\cdots+a_{m} x_{m} \leq a
$$

Many of them!
"Unreasonable effectiveness of Mathematics" E. Wigner

