Preliminaries to the short course in Stable Homological Algebra

By Alex Martsinkovsky

April 2014

1 The stable category of a ring

Let Λ be a ring and Λ-Mod the category of (left) Λ-modules. For Λ-modules M and N, define $\mathrm{P}(M, N)$ as the set of all homomorphisms that can be factored through a projective module.

Exercise 1. Prove that $\mathrm{P}(M, N)$ is a subgroup of $\operatorname{Hom}_{\Lambda}(M, N)$.
Exercise 2. Prove that $\mathrm{P}(M, N)$ is an ideal in Λ-Mod, i.e. for any $f \in$ $\mathrm{P}(M, N)$ the morphisms $g f$ and $f h$ are also in $\mathrm{P}(M, N)$ whenever they make sense.

Definition 1. The stable category Λ-Mod of Λ has the same objects as Λ-Mod. Define the morphisms (M, N) from M to N by

$$
(\underline{M, N}):=\operatorname{Hom}_{\Lambda}(M, N) / \mathrm{P}(M, N)
$$

Define the composition of classes as the class of the composition of representatives, and define the identity morphisms as the classes of the identity homomorphisms.

Exercise 3. Check that Λ-Mod is indeed a category.
Exercise 4. Prove that the biproduct in Λ-Mod induces a biproduct in Λ-Mod, which makes Λ-Mod an additive category.

Exercise 5. Let $Q: \Lambda$ - $\operatorname{Mod} \longrightarrow \Lambda$-Mod be a quotient functor, sending an object to itself, and a morphism to its class. Prove that Q is an additive functor.

Notation. Let \underline{f} denote the class in Λ - $\underline{\text { Mod }}$ of a homomorphism f.

Now let's look at Λ-Mod in more detail.
Question 1. Given a homomorphism f, when is \underline{f} a zero morphism in Λ-Mod?

Answer. Precisely when f factors through a projective module. This is what the definition says.

Question 2. Given a module M, when is M isomorphic to a zero object in Λ-Mod?

Answer. Precisely when M is projective. Indeed, M is isomorphic to a zero object in the stable category if and only if $1_{M}=0_{M}$. If M is projective, then clearly $\underline{1_{M}}=\underline{0_{M}}$. Conversely, if $\underline{1_{M}}=\underline{0_{M}}$, then the identity map on M factors through a projective, which makes \bar{M} a direct summand of a projective. Hence M is projective.

Question 3. Given a homomorphism $f: M \longrightarrow N$, when is \underline{f} an isomorphism in Λ-Mod?

Answer (Heller). If and only if there are projective modules P and Q and an isomorphism $M \oplus P \longrightarrow N \oplus Q$ in Λ-Mod with matrix $\left[\begin{array}{cc}f & * \\ * & *\end{array}\right]$.
Proof. The "if" part follows easily from the answer to Question 2. Now suppose \underline{f} is an isomorphism. Then there is a homomorphism $g: N \longrightarrow M$ such that $\underline{f} \underline{g}=\underline{1_{N}}$ and $\underline{g} \underline{f}=\underline{1_{M}}$. The first equality means that there is a projective P and homomorphisms $h: N \longrightarrow P$ and $k: P \longrightarrow N$ such that $f g+k h=1_{N}$, i.e. the homomorphism $M \oplus P \xrightarrow{f \perp k} N$ is a retraction with splitting $N \xrightarrow{g T h} M \oplus P$. Thus we have a split exact sequence

$$
0 \longrightarrow Q \longrightarrow M \oplus P \xrightarrow{f \perp k} N \longrightarrow 0
$$

and we would be done if we show that Q is projective. Apply the additive functor $(-, Q)$ to this sequence. Since additive functors preserve split exact sequences, the resulting sequence

$$
0 \longrightarrow(\underline{N, Q}) \longrightarrow(\underline{M \oplus P, Q}) \longrightarrow(\underline{Q, Q}) \longrightarrow 0
$$

is still exact (in the category of abelian groups). Since f is an isomorphism and P is a zero object in the stable category, the map $(\underline{N, Q}) \longrightarrow(\underline{M \oplus P, Q})$ is an isomorphism, which implies that $(\underline{Q, Q})=0$, i.e. $\underline{1_{Q}}=\underline{0_{Q}}$, and therefore Q is projective.

Next, we shall see that for any module M, the isomorphism type of the syzygy module ΩM of M in the stable category is uniquely determined. First, we need

Lemma 1 (Schanuel). Let $0 \longrightarrow \Omega M \longrightarrow P \xrightarrow{\pi} M \longrightarrow 0$ and $0 \longrightarrow$ $\Omega^{\prime} M \longrightarrow P^{\prime} \xrightarrow{\pi^{\prime}} M \longrightarrow 0$ be exact sequences with P and P^{\prime} projective. Then $\Omega M \oplus P^{\prime} \simeq \Omega^{\prime} M \oplus P$.

Proof. Take the pull-back of $\left(\pi, \pi^{\prime}\right)$:

Then both the middle row and the middle column split. Thus $\Omega M \oplus P^{\prime} \simeq$ $X \simeq \Omega^{\prime} M \oplus P$

Corollary 2. ΩM is isomorphic to $\Omega^{\prime} M$ in the stable category.
Our next goal is to show that the operation Ω gives rise to an endofunctor on Λ-Mod. For each Λ-module M, choose and fix a short exact sequence $0 \longrightarrow \Omega M \longrightarrow P_{M} \longrightarrow M \longrightarrow 0$ with P_{M} projective. Also, for each homomorphism $f: M \longrightarrow N$, choose and fix $f_{0}: P_{M} \longrightarrow P_{N}$ and $\Omega f:$ $\Omega M \longrightarrow \Omega N$ making the diagram

commute.
Exercise 6. Suppose $f: M \longrightarrow N$ factors through a projective and g : $P \longrightarrow N$ is an epimorphism with P projective. Show that f lifts over g.

Lemma 3. If $f: M \longrightarrow N$ factors through a projective, then $\underline{\Omega f}=0$.

Proof. By Ex. ??, f lifts over the epimorphism $P_{N} \xrightarrow{\pi_{N}} N: f=\pi_{N} t$. By the universal property of the kernel, there is $s: P_{M} \longrightarrow \Omega N$ such that $f_{0}-t \pi_{M}=\iota_{N} s$:

Now $\iota_{N} s \iota_{M}=\left(f_{0}-t \pi_{M}\right) \iota_{M}=f_{0} \iota_{M}=\iota_{N} \Omega f$, and, since ι_{N} is a monomorphism, $\Omega f=s \iota_{M}$, showing that Ωf factors through a projective.

Lemma 4. For any homomorphism $f: M \longrightarrow N, \underline{\Omega f}$ does not depend on the choice of f_{0}.

Proof. Take two liftings of f and look at their difference. This is a lifting of the zero map. By the preceding lemma the classes of the two liftings coincide.

Combining the last two lemmas, we have
Corollary 5. $\Omega:(\underline{M, N}) \longrightarrow(\underline{\Omega M, \Omega N}): \underline{f} \mapsto \underline{\Omega f}$ is a well-defined map.

Proposition 6. With the above fixed choices of resolutions and liftings, Ω is an endofunctor on Λ-Mod.

Proof. First, we show that Ω preserves the identity maps. Indeed, since both $1_{\Omega M}$ and $\Omega\left(1_{M}\right)$ are liftings of 1_{M}, we have, by Lemma ??, that $\underline{1_{\Omega M}}=$ $\Omega\left(1_{M}\right)$, the latter being $\Omega\left(\underline{1_{M}}\right)$ by definition (see Corollary ??).

Next, we need to show that Ω preserves composition. But, for any composition $f g, \Omega(f g)$ and $\Omega(f) \Omega(g)$ are both liftings of $f g$. By Lemma ??, $\underline{\Omega(f g)}=\underline{\Omega(f) \Omega(g)}$, the latter being $\underline{\Omega(f)} \underline{\Omega(g)}$ by the definition of the composition in Λ-Mod.

We will need another result,
Lemma 7. Let \mathbb{K} and \mathbb{L} be homotopy equivalent complexes of projectives, and $\tau_{i} \mathbb{K}$ and $\tau_{i} \mathbb{L}$ the truncations at degree i. Then $H_{i}\left(\tau_{i} \mathbb{K}\right)$ and $H_{i}\left(\tau_{i} \mathbb{L}\right)$ are isomorphic in the stable category.

Proof. Let $\mathbb{K} \underset{\beta}{\stackrel{\alpha}{\rightleftharpoons}} \mathbb{L}$ be mutually inverse homotopy isomorphisms. Then $1_{\mathbb{K}}-\beta \alpha$ is 0 -homotopic, with homotopy, say, s. We then have a diagram

where $\tilde{\alpha}$ and $\tilde{\beta}$ are induced by $\left(\alpha_{i}, \alpha_{i+1}\right)$ and $\left(\beta_{i}, \beta_{i+1}\right)$. Notice that ($1-$ $\tilde{\beta} \tilde{\alpha}) \pi_{i}=\left(\pi_{i} s_{i-1} \iota_{i}\right) \pi_{i}$. Since π_{i} is an epimorphism, $1-\tilde{\beta} \tilde{\alpha}=\pi_{i} s_{i-1} \iota_{i}$, and therefore $\underline{1}=\underline{\tilde{\beta}} \underline{\tilde{\alpha}}$ in the stable category. Likewise, $1=\underline{\tilde{\beta}} \underline{\tilde{\alpha}}$.

