Preliminaries to the short course in Stable Homological Algebra

By Alex Martsinkovsky

April 2014

1 The stable category of a ring

Let Λ be a ring and Λ -Mod the category of (left) Λ -modules. For Λ -modules M and N, define P(M, N) as the set of all homomorphisms that can be factored through a projective module.

Exercise 1. Prove that P(M, N) is a subgroup of $Hom_{\Lambda}(M, N)$.

Exercise 2. Prove that P(M, N) is an ideal in Λ -Mod, i.e. for any $f \in P(M, N)$ the morphisms gf and fh are also in P(M, N) whenever they make sense.

Definition 1. The stable category Λ -Mod of Λ has the same objects as Λ -Mod. Define the morphisms (M, N) from M to N by

 $(M, N) := \operatorname{Hom}_{\Lambda}(M, N) / \operatorname{P}(M, N)$

Define the composition of classes as the class of the composition of representatives, and define the identity morphisms as the classes of the identity homomorphisms.

Exercise 3. Check that Λ -<u>Mod</u> is indeed a category.

Exercise 4. Prove that the biproduct in Λ -Mod induces a biproduct in Λ -Mod, which makes Λ -Mod an additive category.

Exercise 5. Let $Q : \Lambda \operatorname{-Mod} \longrightarrow \Lambda \operatorname{-Mod}$ be a quotient functor, sending an object to itself, and a morphism to its class. Prove that Q is an additive functor.

Notation. Let \underline{f} denote the class in Λ -<u>Mod</u> of a homomorphism f.

Now let's look at Λ -<u>Mod</u> in more detail.

Question 1. Given a homomorphism f, when is \underline{f} a zero morphism in Λ -Mod?

Answer. Precisely when f factors through a projective module. This is what the definition says.

Question 2. Given a module M, when is M isomorphic to a zero object in Λ -Mod?

Answer. Precisely when M is projective. Indeed, M is isomorphic to a zero object in the stable category if and only if $\underline{1}_M = \underline{0}_M$. If M is projective, then clearly $\underline{1}_M = \underline{0}_M$. Conversely, if $\underline{1}_M = \underline{0}_M$, then the identity map on M factors through a projective, which makes M a direct summand of a projective. Hence M is projective.

Question 3. Given a homomorphism $f : M \longrightarrow N$, when is \underline{f} an isomorphism in Λ -Mod?

Answer (Heller). If and only if there are projective modules P and Q and an isomorphism $M \oplus P \longrightarrow N \oplus Q$ in Λ -Mod with matrix $\begin{bmatrix} f & * \\ * & * \end{bmatrix}$.

Proof. The "if" part follows easily from the answer to Question 2. Now suppose \underline{f} is an isomorphism. Then there is a homomorphism $g: N \longrightarrow M$ such that $\underline{f} \ \underline{g} = \underline{1}_N$ and $\underline{g} \ \underline{f} = \underline{1}_M$. The first equality means that there is a projective P and homomorphisms $h: N \longrightarrow P$ and $k: P \longrightarrow N$ such that $fg + kh = \underline{1}_N$, i.e. the homomorphism $M \oplus P \xrightarrow{f \perp k} N$ is a retraction with splitting $N \xrightarrow{g \top h} M \oplus P$. Thus we have a split exact sequence

$$0 \longrightarrow Q \longrightarrow M \oplus P \xrightarrow{f \perp k} N \longrightarrow 0,$$

and we would be done if we show that Q is projective. Apply the additive functor $(\underline{-,Q})$ to this sequence. Since additive functors preserve split exact sequences, the resulting sequence

$$0 \longrightarrow (\underline{N,Q}) \longrightarrow (\underline{M \oplus P,Q}) \longrightarrow (\underline{Q,Q}) \longrightarrow 0$$

is still exact (in the category of abelian groups). Since \underline{f} is an isomorphism and P is a zero object in the stable category, the map $(\underline{N}, \underline{Q}) \longrightarrow (\underline{M} \oplus P, \underline{Q})$ is an isomorphism, which implies that $(\underline{Q}, \underline{Q}) = 0$, i.e. $\underline{1}_{\underline{Q}} = \underline{0}_{\underline{Q}}$, and therefore Q is projective. Next, we shall see that for any module M, the isomorphism type of the syzygy module ΩM of M in the stable category is uniquely determined. First, we need

Lemma 1 (Schanuel). Let $0 \longrightarrow \Omega M \longrightarrow P \xrightarrow{\pi} M \longrightarrow 0$ and $0 \longrightarrow \Omega' M \longrightarrow P' \xrightarrow{\pi'} M \longrightarrow 0$ be exact sequences with P and P' projective. Then $\Omega M \oplus P' \simeq \Omega' M \oplus P$.

Proof. Take the pull-back of (π, π') :

Then both the middle row and the middle column split. Thus $\Omega M \oplus P' \simeq X \simeq \Omega' M \oplus P$

Corollary 2. ΩM is isomorphic to $\Omega' M$ in the stable category.

Our next goal is to show that the operation Ω gives rise to an endofunctor on Λ -<u>Mod</u>. For each Λ -module M, choose and fix a short exact sequence $0 \longrightarrow \Omega M \longrightarrow P_M \longrightarrow M \longrightarrow 0$ with P_M projective. Also, for each homomorphism $f: M \longrightarrow N$, choose and fix $f_0: P_M \longrightarrow P_N$ and $\Omega f:$ $\Omega M \longrightarrow \Omega N$ making the diagram

$$0 \longrightarrow \Omega M \xrightarrow{\iota_M} P_M \xrightarrow{\pi_M} M \longrightarrow 0$$
$$\downarrow_{\Omega f} \qquad \qquad \downarrow_{f_0} \qquad \qquad \downarrow_f$$
$$0 \longrightarrow \Omega N \xrightarrow{\iota_N} P_N \xrightarrow{\pi_N} N \longrightarrow 0$$

commute.

Exercise 6. Suppose $f : M \longrightarrow N$ factors through a projective and $g : P \longrightarrow N$ is an epimorphism with P projective. Show that f lifts over g.

Lemma 3. If $f: M \longrightarrow N$ factors through a projective, then $\Omega f = 0$.

Proof. By Ex. ??, f lifts over the epimorphism $P_N \xrightarrow{\pi_N} N$: $f = \pi_N t$. By the universal property of the kernel, there is $s : P_M \longrightarrow \Omega N$ such that $f_0 - t\pi_M = \iota_N s$:

Now $\iota_N s \iota_M = (f_0 - t \pi_M) \iota_M = f_0 \iota_M = \iota_N \Omega f$, and, since ι_N is a monomorphism, $\Omega f = s \iota_M$, showing that Ωf factors through a projective.

Lemma 4. For any homomorphism $f: M \longrightarrow N$, $\underline{\Omega f}$ does not depend on the choice of f_0 .

Proof. Take two liftings of f and look at their difference. This is a lifting of the zero map. By the preceding lemma the classes of the two liftings coincide.

Combining the last two lemmas, we have

Corollary 5. $\Omega : (\underline{M}, \underline{N}) \longrightarrow (\underline{\Omega}\underline{M}, \underline{\Omega}\underline{N}) : \underline{f} \mapsto \underline{\Omega}\underline{f}$ is a well-defined map.

Proposition 6. With the above fixed choices of resolutions and liftings, Ω is an endofunctor on Λ -Mod.

Proof. First, we show that Ω preserves the identity maps. Indeed, since both $1_{\Omega M}$ and $\Omega(1_M)$ are liftings of 1_M , we have, by Lemma ??, that $\underline{1_{\Omega M}} = \Omega(1_M)$, the latter being $\Omega(1_M)$ by definition (see Corollary ??).

Next, we need to show that Ω preserves composition. But, for any composition fg, $\Omega(fg)$ and $\Omega(f)\Omega(g)$ are both liftings of fg. By Lemma ??, $\underline{\Omega(fg)} = \underline{\Omega(f)\Omega(g)}$, the latter being $\underline{\Omega(f)} \ \underline{\Omega(g)}$ by the definition of the composition in Λ -Mod.

We will need another result,

Lemma 7. Let \mathbb{K} and \mathbb{L} be homotopy equivalent complexes of projectives, and $\tau_i \mathbb{K}$ and $\tau_i \mathbb{L}$ the truncations at degree *i*. Then $H_i(\tau_i \mathbb{K})$ and $H_i(\tau_i \mathbb{L})$ are isomorphic in the stable category. *Proof.* Let $\mathbb{K} \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} \mathbb{L}$ be mutually inverse homotopy isomorphisms. Then $1_{\mathbb{K}} - \beta \alpha$ is 0-homotopic, with homotopy, say, s. We then have a diagram

where $\tilde{\alpha}$ and $\tilde{\beta}$ are induced by (α_i, α_{i+1}) and (β_i, β_{i+1}) . Notice that $(1 - \tilde{\beta}\tilde{\alpha})\pi_i = (\pi_i s_{i-1}\iota_i)\pi_i$. Since π_i is an epimorphism, $1 - \tilde{\beta}\tilde{\alpha} = \pi_i s_{i-1}\iota_i$, and therefore $\underline{1} = \underline{\tilde{\beta}} \ \underline{\tilde{\alpha}}$ in the stable category. Likewise, $1 = \underline{\tilde{\beta}} \ \underline{\tilde{\alpha}}$.