Various Aspects of Modality

Meghdad Ghari, Hamzeh Mohammadi, Afshin Zarei

Institute for Research in Fundamental Sciences (IPM)
School of Mathematics
and
Isfahan University of Technology
Department of Mathematical Sciences

IPM-Isfahan Logic Group http://math.ipm.ac.ir/Isfahan/Logic-Group.htm

Alethic Logics

Alethic logic is the study of *necessity* and *possibility*.

 $\Box A \equiv A$ is necessarily true.

 $\Diamond A \equiv A$ is possibly true.

Alethic Logics

Aristotle.

On Interpretation.

C. W. A. Whitaker, Aristotle's De interpretatione. Contradiction and Dialectic, Oxford: Clarendon Press, 1996.

Provability Logics

Provability logic is the study of *provability* in a formal system.

Gödel-Löb Provability Logic:

 $\Box A \equiv A$ is provable in Peano arithmetic.

 $\Diamond A \equiv A$ is consistent with Peano arithmetic.

Provability Logics

Kurt Gödel. Eine Interpretation des intuitionistischen Aussagenkalkiils. Kurt Gödel. Collected Works, Vol. I. 300–303.

M. H. Löb Solution of a problem of Leon Henkin. Journal of Symbolic Logic, 20 (1955), 115–118.

R. Solovay. Provability interpretations of modal logic. Israel Journal of Mathematics, 25 (1976), 287-304.

Epistemic Logics I

Epistemic logic is the study of *knowledge* and *belief*.

Logic of knowledge:

 $KA \equiv A \text{ is known.}$

 $PA \equiv A$ is compatible with everything the agent knows.

Logic of belief:

 $BA \equiv A$ is believed.

 $CA \equiv A$ is compatible with everything the agent believes.

Epistemic Logics I

J. Hintikka.

Knowledge and Belief.

Ithaca, N.Y., Cornell University Press (1962)

Epistemic Logics II

Group knowledge:

 $K_i A \equiv \text{Agent } i \text{ knows that } A.$

 $EA \equiv \text{Every agent knows that } A.$

 $DA \equiv A$ is distributed knowledge between agents, i.e. A can be derived from the knowledge of all agents put together.

 $CA \equiv A$ is common knowledge between agents, i.e. $CA = EA \land EEA \land EEEA \land \dots$

Epistemic Logics II

R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi. Reasoning about Knowledge. MIT Press, 1995.

Justification Logics

Justification Logic is the study of *justifications*, evidence and proofs.

Epistemic interpretation:

 $t: A \equiv t$ is a justification for A.

Provability interpretation:

 $t: A \equiv t$ is a proof of A in Peano arithmetic.

Justification Logics

K. Gödel.

Vortrag bei Zilsel.

Kurt Gödel Collected Works, (S. Feferman et al., editor), Vol. III, pages 86–113.

S. Artemov.

Operational modal logic.

Technical Report MSI 95–29, Cornell University, 1995.

Justification Logics

S. Artemov, M. Fitting. Justification Logic. Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/archives/fall2011/entries/logic-justification/

- Roman Kuznets's Homepage. Justification Logic Bibliography. http://www.iam.unibe.ch/ kuznets/JLBibliography.html
- Meghdad Ghari's Homepage. Justification Logic Bibliography in Persian. https://sites.google.com/site/meghdadghari/ persianjlbibliography

Temporal Logics

Temporal logic is the study of *time*.

Prior's tense operators:

 $GA \equiv At$ all times in the future A is true.

 $FA \equiv At$ some time in the future A is true.

 $HA \equiv At$ all times in the past A is true.

 $PA \equiv At$ some time in the past A is true.

Temporal Logics

- Arthur N. Prior. Time and Modality. Clarendon Press, Oxford, 1957.
- Arthur N. Prior. Past, Present and Future. Clarendon Press, Oxford, 1967.

Dynamic Logics

Dynamic logic is the study of *programs* and *actions*.

```
[\alpha]A \equiv \text{It is necessary that after executing } \alpha, A is true.
```

 $\langle \alpha \rangle A \equiv$ There is a computation of α that terminates in a state satisfying A.

 α ; $\beta \equiv \text{Execute } \alpha$, then execute β .

 $\alpha \cup \beta \equiv \text{Choose either } \alpha \text{ or } \beta \text{ nondeterministically and execute it.}$

 $\alpha^* \equiv \text{Execute } \alpha \text{ a nondeterministically chosen finite number of times.}$

 $?A \equiv \text{Test } A$; proceed if true, fail if false.

Dynamic Logics

V. Pratt.

Semantical considerations on Floyd-Hoare logic. In Proceedings 17th IEEE Symposium on Computer Science, pages 109–121, 1976.

Deontic Logics

Deontic logic is the study of *obligation* and *permission*.

 $OA \equiv It$ is obligatory that A.

 $PA \equiv \text{It is permitted that } A.$

 $FA \equiv \text{It is forbidden that } A.$

Deontic Logics

E. Mally.

The Basic Laws of Ought: Elements of the Logic of Willing. Universitäts-Buchhandlung Graz, 1926.

Conditional Logics

Conditional logic is the study of *conditionals*.

 $[A]B \equiv \text{if } A \text{ and } ceteris \ paribus (other things being equal), then } B.$

Conditional Logics

R. Stalnaker.

A theory of conditionals.

Studies in Logical Theory, American Philosophical Quarterly, Oxford, pages 98–112, 1968.

Conditional Logics

D. Lewis.

Counterfactuals.

Oxford: Basil Blackwell Ltd, 1973.

B. Chellas.
 Basic conditional logic.
 Journal of Philosophical Logic 4, 133–153, 1975.

Hybrid Logic

Hybrid Logic is the study of *nominals*.

 $@_iA \equiv A$ is true in the unique state named by the nominal i.

Hybrid Logic

A. Prior.

Papers on Time and Tense.

Oxford: Clarendon Press, 1968.

R. Bull.

An Approach to Tense Logic.

Theoria, 36: 282-300, 1970.

Modal Logic of Forcing

Modal Logic of Forcing is the study of forcing extensions.

 $\Box A \equiv A$ is necessarily true in all forcing extensions.

 $\Diamond A \equiv A$ is forceably or possibly true in some forcing extension.

Modal Logic of Forcing

J. D. Hamkins.

A simple maximality principle.

Journal of Symbolic Logic, 68(2):527-550, 2003.

