ERRATA

Guillemin and Pollack, Differential Topology

p. 5	\#4	$\|x\|<a$
p. 6	\#8	hyperboloid
p. 7	\#18b	$g(x)=f(x-a) f(b-x) ; h(x)=\frac{\int_{-\infty}^{x} g(t) d t}{\int_{-\infty}^{\infty} g(t) d t}$
p. 12	\#8	hyperboloid, and delete the parentheses
p. 16	line 16	in $f(X) \subset Y$
p. 24	line -11	"In particular, taking X to be ..."
p. 25	\#6	This is the definition of homogeneity of degree $m ; 0$ is the only possible critical value
p. 27	\#11(a)	Remark: This is really a special case of Exercise $\underline{6}$.
	\#13	Delete "of" at the end of the first line.
p. 28	line 9	$g \circ f: U \rightarrow \mathbf{R}^{\ell}$
p. 45	\#6	simply connected
p. 48	\#22	$r_{i}=\left\|x-x_{i}\right\|$
p. 51	line -9	$g\left(x, \frac{1}{t} v\right)$
p. 52	line -15	exercise 15
p. 55	\#11	$f^{-1}(a)$ should be $\{x \in X: F(x, v)=a$ for some $v\}$. The HINT should read as follows. Show first that $F^{-1}(a)$ lies in a compact subset $\{(x, v):\|v\| \leq$ constant $\}$ of $T(X)$: for if $F\left(x_{i}, v_{i}\right)=a$ and $\left\|v_{i}\right\| \rightarrow \infty$, pick a subsequence \ldots. Now use the proof of the Stack of Records Theorem (p. 26, \#7) to show that $F^{-1}(a)$ is indeed finite.
p. 56	\#15	A and B are disjoint, closed subsets.
p. 61	line 6	$Z=\phi^{-1}(0)$
	line $-6,-5,-3$	$d g_{s}$ and $d(\partial g)_{s}$ map to \mathbf{R}^{ℓ}
p. 62	line 1	ker $d g_{s}$ has dimension $k-\ell$, $\operatorname{ker} d(\partial g)_{s}$ has dimension $k-\ell-1$
p. 64	\#10	$d f_{z}(\vec{n}(z))<0$
p. 66	\#4	$\|x\|<a$
p. 70	line -10	$S \rightarrow \mathbf{R}^{M}$
p. 75	\#7	affine subspace V; the map given in the hint should be $\mathbf{R}^{\ell} \times S \times \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$, defined by $(t, v, a) \mapsto t \cdot v+a$
	\#9	$f: \mathbf{R}^{k} \rightarrow \mathbf{R}$
p. 76	\#18	$X \subset T(X)$ refers to $X \times\{0\}$
p. 83	\#5	contractible; there still is a dimension 0 anomaly, so one should require $\operatorname{dim} X>0$
	\#6	contractible
p. 84	\#9	$I_{2}(f, Z)=0, p \notin f(X) \cup Z$
p. 85	\#15	closed manifold C
	\#16	Consider the submanifold $F^{-1}(\Delta)$
	line -10	Corollary to Exercises 18 and 19, obviously

p. 90	\#9	Not so fast! To apply Exercise 8, we must use the fact that X is a compact hypersurface to produce a ray intersecting X (and transversely).
	\#10	small neighborhood of $-z /\|z\|$.
p. 91	\#11	\bar{D}_{1} is compact; "parametrization" in last line.
p. 99	line 8	sign
p. 106	\#18	(b) nonzero normal vectors
	\#21	What does it mean to define a manifold with boundary by independent functions?
	\#23	X orientable and connected
p. 117	\#9	$g(t+2 \pi)=g(t)+2 \pi q$
p. 131	\#4	"is" stable
p. 136	line 11	The denominator should be $\|\vec{v}(x)+\operatorname{tr}(t, x)\|$
p. 138	\#1	$h_{t}(z)=e^{t} z$
p. 139	\#7	\vec{v}_{1} should have only nondegenerate zeroes inside U
p. 140	\#12	In the last formula, $g^{i j}$, not $g_{i j}$, where $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$
	\#14a	the matrix $\left(g^{i j}\right)$ is nonsingular
p. 141	\#17	sum of the indices of f at its critical points
p. 144-5	\#3	The new map will only agree with f on the complement of a slightly larger ball, so it's not quite an extension
p. 147	\#3	$f(t x)=g_{t}(x)$
	\#6	Replace ρ with β, b with a in the last three lines
	\#8	"Now apply the corollary of the special case" should be after the right parenthesis
p. 148	\#11	ρ is not a submersion, but the rest is right
p. 155	line 17	$\left(T^{\pi}\right)^{\sigma}=T^{\sigma \circ \pi}$
p. 164	line -10	$d f_{I}=d f_{i_{1}} \wedge \cdots \wedge d f_{i_{p}}$
p. 166	line -3	X is a k-dimensional oriented manifold with boundary
p. 170	line 2	$f_{1} \circ h, f_{2} \circ h, f_{3} \circ h$
	line 8	$\vec{F}=\left(f_{1}, f_{2}, f_{3}\right) \circ h$
p. 173	\#9	The reference should be to Exercise 7
p. 174-5		1, 2, 3 magically become (a), (b), (c)
p. 187	\#11	The reference should be to Exercise 12
	\#13	We need Z_{0} and Z_{1} oriented, and the definition of cobordism needs to be updated to $\partial W=-Z_{0} \times\{0\} \cup Z_{1} \times\{1\}$.
p. 188	line 5	Y should be connected (cf. the proof on p. 191)
p. 190		In the lemma, X, Y should be compact, and \int_{S} should be \int_{X}; in the proof, U should be a connected neighborhood of y
p. 191	\#1	$\frac{x}{x^{2}+y^{2}} d y$
p. 194	\#7	last line: Identify c.
p. 195	line -18	parallelepiped
p. 200	\#8	Delete the $\frac{1}{2}$ before the Hessian matrix

