Introduction to Group Actions

3rd Problem Set Due Aban 16th, 1398

- Exercise 2.2.7, 2.2.8 and 2.2.9, pages 36-37 from [N].
- Exercises 7.1.4 and 7.1.5, page 159 from [BS].
- Consider $f, g \in \text{Homeo}^+(\mathbb{S}^1)$ so that g is a factor of f. Show that $\rho(f) = \rho(g)$.
- For any real number θ and any complex number a with |a| < 1, define the following map on the complex plane.

$$g_{\theta,a}(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}.$$

a) Show that restriction of $g_{\theta,a}$ to the unit circle $(\{z : |z| = 1\})$ defines a homeomorphism of this circle.

b) Compute the rotation number of this map in terms of θ and a.

- Let $f,g \in \text{Homeo}^+(\mathbb{S}^1)$ be two commuting homeomorphisms (i.e. $f \circ g = g \circ f$). Prove that $\rho(f \circ g) = \rho(f) + \rho(g)$.
- Let f be an element of Homeo⁺(\mathbb{S}^1) so that for any $g \in \text{Homeo}^+(\mathbb{S})^1$, $\rho(f \circ g) = \rho(f) + \rho(g)$. Show that f is the identity map.
- a) Let $\lambda \neq 0$ be a real number. Consider the following homeomorphisms of \mathbb{R} .

$$f(x) = x + 1, \quad g(x) = \lambda x.$$

Prove that the group generated by f and g is not free.

b) Let $Aff(\mathbb{R})$ be the group of affine transformations of the real line.

 $Aff(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : f(x) = ax + b, \text{ for some } a, b \in \mathbb{R}, a \neq 0 \}.$

Show that this group does not contain any subgroup isomorphic to \mathbb{F}_2 (free group on two generators).

References

- [BS] Brin, M., Stuck, G., *Introduction to Dynamical Systems*, Cambridge University Press.
- [N] Navas, A., *Groups of Circle Diffeomorphisms*, The University of Chicago Press.

E-mail address: gt@ipm.ir

October 24, 2019