Introduction to Group Actions

2nd Problem Set Due Aban 9th, 1398

- Exercise 2.1.2, page 24 from [N].
- Exercises 7.1.1, 7.1.2 and 7.1.3, page 159 from [BS].
- Let $\{a_n\}_n$ be a sequence of real numbers, so that there is some contstant C > 0 satisfying

$$|a_{m+n} - a_m - a_n| \le C$$
, for all $m, n \in \mathbb{N}$.

- a) Show that the limit $\lim_{n\to\infty} \frac{a_n}{n}$ exists.
- b) If we denote the value of this limit by ρ , prove that the sequence $\{a_n n\rho\}_n$ is bounded.
- Let \mathbb{H} denote the upper half plane in \mathbb{C} ,

$$\mathbb{H} = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}.$$

For any matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}(2,\mathbb{R})$ define $f_A(z) = \frac{az+b}{cz+d}$.

- a) Show that for $A \in SL(2,\mathbb{R})$, f_A defines a homeomorphism of \mathbb{H} .
- b) Show that $f_A = f_B$ if and only if $A = \pm B$.
- c) Show that for any pair of hyperbolic matrices A, B in $SL(2, \mathbb{R})$, two homeomorphisms f_A and f_B are conjugate.
- d) Show that for any pair of parabolic matrices A, B in $SL(2, \mathbb{R})$, two homeomorphisms f_A and f_B are conjugate.
- e) Show that the statement of part (c) and (d) is not true for elliptic matrices.
- Let $R: \mathbb{S}^1 \to \mathbb{S}^1$ be an irrational rotation on the circle. Show that the centralizer of R in $\operatorname{Homeo}^+(\mathbb{S}^1)$ is exactly the set of rotations, i.e. if an orientation preserving homeomorphism g commutes with R, then g is a rotation. Is the same statement true for rational rotations?
- a) Show that a homeomorphism $f \in \text{Homeo}^+(\mathbb{S}^1)$ does not admit both finite and dense orbit.
 - b) Give an example of two homeomorphisms $f, g \in \text{Homeo}^+(\mathbb{S}^1)$ so that the action of the group G generated by f, g on \mathbb{S}^1 admits

both finite and dense orbits.

- Let S_n be the group of permutations on n elements. a) Show that for any $n \geq 3$, Homeo⁺(\mathbb{S}^1) does not contain a subgroup isomorphic to S_n .
 - b) Show that for any $n \geq 4$, Homeo(\mathbb{S}^1) does not contain a subgroup isomorphic to S_n .

References

- [BS]Brin, M., Stuck, G., Introduction to Dynamical Systems, Cambridge University
- [N]Navas, A., Groups of Circle Diffeomorphisms, The University of Chicago Press.